
J .  Nuid M d l .  ( 1  994). I d .  273, p p ,  1 29 
(‘opyright (c) 1994 Cambridge Univcrsity Press 

1 

Coherent structures in rotating three-dimensional 
turbulence 

By PETER BARTELLOT, O L I V I E R  M E T A I S  
’ A N D  M A R C E L  L E S I E U R  

LEG1 - IMG, lnstitut National Polytechnique de Grenoble and Universite Joseph Fourier, 
BP 53 X, 38041 Grenoble Cedex, France 

(Received 2 June 1992 and in revised form 20 January 1994) 

Numerical simulations investigating the formation and stability of quasi-two- 
dimensional coherent vortices in rotating homogeneous three-dimensional flow are 
described. In a numerical study of shear flows Lesieur, Yanase & Metais (1991) found 
that cyclones (respectively anticyclones) with 1 ~ 0 2 ~ 1  - 0(2R), where (02D is the vorticity 
and Q is the rotation rate, are stabilized (respectively destabilized) by the rotation. 
A study of triply periodic pseudo-spectral simulations (64’) was undertaken in order 
to investigate the vorticity asymmetry in homogeneous turbulence. Specifically, we 
examine ( i )  the possible three-dimensionalization of initially two-dimensional vortices 
and ( i i )  the emergence of quasi-two-dimensional structures in initially-isotropic three- 
dimensional turbulence. Direct numerical simulations of the Navier-Stokes equations 
are compared with large-eddy simulations employing a subgridscale model based on 
the second-order velocity structure function evaluated at the grid separation and with 
simulations employing hyperviscosity. 

Isolated coherent two-dimensional vortices, obtained from a two-dimensional de- 
cay simulation, were superposed with a low-amplitude three-dimensional pertur- 
bation, and used to initialize the first set of simulations. With R = 0, a three- 
dimensionalization of all vortices was observed. This occurred first in the small 
scales in conjunction with the formation of longitudinal hairpin vortices with vortic- 
i ty perpendicular to that of the initial quasi-two-dimensional flow. In agreement with 
centrifugal stability arguments, when 2R = [cuZD],,,,, a rapid destabilization of anticy- 
clones was observed to occur, whereas the initial two-dimensional cyclonic vortices 
persisted throughout the simulation. At larger Q, both cyclones and anticyclones 
remained two-dimensional, consistent with the Taylor-Proudman theorem. A second 
set of simulations starting from isotropic three-dimensional fields was initialized by 
allowing a random velocity field to evolve (52 = 0) until maximum energy dissipation. 
When the simulations were continued with 252 = [o . n],,,,, /Q, the three-dimensional 
flow was observed to organize into two-dimensional cyclonic vortices. At larger 
Q, two-dimensional anticyclones also emerged from the initially-isotropic flow. The 
consequences for a variety of industrial and geophysical applications are clear. For 
quasi-two-dimensional eddies whose characteristic circulation times are of the order of 
Q-’, rotation induces a complete disruption of anticyclonic vortices, while stabilizing 
cyclonic ones. 
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1. Introduction 

Given the assumption of large timescales, the Taylor-Proudman theorem predicts 
that solid-body rotation at rate 52 = Q23 (Q > 0) tends to two-dimensionalize the 
flow at low Rossby numbers, here defined as 4, = [o . .R],.,,1,/2R', where o is the 
vorticity. This result is valid to the lowest order in 4, for a flow of uniform density 
and of arbitrary depth measured in the direction parallel to 52. This, together with the 
fact that large-scale geophysical flows are in shallow layers, justifies the application 
of quasi-two-dimensional dynamics to the latter. The picture that has emerged after 
20 years of numerical simulations of two-dimensional turbulence is dominated by the 
emergence of isolated coherent vorticity structures (e.g. Fornberg 1977; Basdevant 
et al. 1981; McWilliams 1984, etc.). The robustness of these vortices in physical 
space has focused recent attention on vorticity dynamics. Since the range of excited 
scales in atmospheric and oceanic turbulence is large, the Rossby number also spans 
a wide range. Consequently, it is of interest to consider the possibility of flow 
two-dimensionalization, and the vorticity dynamics, from a more general rotating 
three-dimensional framework. 

In addition to two-dimensional motion, rotating fluid flow also supports inertial 
waves, which are solutions to the linear equation 
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a o  au 
- ( r ,  t )  = 2Q-(r, t ) ,  
at ax3 

where u(v, t )  is the velocity. In Fourier space this becomes 

a; 
ik x - ( k , t )  = 2iQ2k3;(k,t), 

at 

where k is the wavevector. We seek the eigenvalues of the curl operator, i.e. 
ik x i i (k , t )  = ,%(k,t). The three solutions are I = 0, which corresponds to Taylor- 
Proudman two-dimensionalization and 1 = f k ,  which gives a pair of inertial waves 
satisfying h ( k , t )  = ii(k,O)expfio(k)t, where o(k)  = 2Qk3/k = 2 Q c o s Q ~  and Ok is 
the angle between the wavevector and the rotation axis, 23. Surfaces of constant 
inertial-wave frequency are thus cones in Fourier space (see e.g. Greenspan 1969). 
In the low-R, limit, the timescale separation between slow quasi-two-dimensional 
motion and fast three-dimensional inertial waves increases. However, in this study we 
are particularly interested in the interactions between these modes at initial Rossby 
numbers of order one. 

Rotating fluids have been studied in the laboratory by Hart (1971), Kloosterziel & 
van Heijst (1991) and Bidokhti & Tritton (1992) for various turbulent and transitional 
flows. At 4) - 0(1) they noted that, whereas regions of two-dimensional cyclonic vor- 
ticity have increased stability, two-dimensional anticyclonic regions are destabilized 
via a rapid three-dimensionalization. Since the linear centrifugal instability of anticy- 
clonic regions at critical Rossby numbers has been recently discussed by Kloosterziel 
& van Heijst (1991), Tritton (1992) and Smyth & Peltier (1994), we mention only 
briefly the result of Rayleigh (1916), who considered the three-dimensional stability 
of an isolated axisymmetric vortex to axisymmetric perturbations. Instability may 
occur in  regions where 

I d  2 2  @ ( r )  = - - [ r u ~ ( r ) ]  = - ug(r)  w ( r )  < 0, 
r3  dr r 
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where @ ( r )  is the Rayleigh discriminant, uo(r) is the tangential velocity and 

I d  
w ( r )  = - - [ r u ~ ( r ) ]  

r dr 

is the vorticity (see e.g. Drazin & Reid 1981). For a rotating fluid, the same 
can be applied in the inertial frame when u(r)  + u(r)  + Or and w ( r )  + w ( r )  + 252, 
yielding a stability/instability crossover for anticyclones when w ( r )  = -252, i.e. at 
R,, - O(1). Bradshaw (1969) used reasoning analogous to that applied to the 
buoyancy term in studies of stratified shear flows, to describe rotating shear flows. 
The quantity corresponding to the gradient Richardson number was ‘Ri ’ = S( 1 + S), 
where S = 2O/[, and ( is the mean-flow vorticity. Three-dimensional instability (i.e. 
‘convection’) occurs when ‘Ri ’ < 0, yielding maximum anticyclonic destabilization at 
S = R;’ = 1/2. Recent three-dimensional numerical simulations of mixing layers by 
Lesieur, Yanase & Mktais (1991), wakes by Metais et al. (1992) and channel flow by 
Kristoffersen & Anderson (1993) have reproduced the vorticity asymmetry observed 
in the laboratory and predicted by the linear-stability arguments. 

In rotating homogeneous turbulence we have neither the background shear of 
Bradshaw (1969) nor the limitation to axisymmetric flow of Rayleigh (1916). It is 
therefore instructive to consider the nonlinear evolution of vortex filaments for the 
case of initially quasi-two-dimensional flow (see Lesieur et al. 1991). The nonlinear 
evolution is constrained in the inviscid barotropic equations in that vortex tubes, 
tangent to the absolute vorticity o + 252, are material. At the maximum anticyclonic 
instability given by the linear arguments, the Rossby number is order one. In 
this case, the absolute vorticity field is dominated by intense quasi-two-dimensional 
cyclones interspersed with low-level three-dimensional structure. After the Rayleigh 
destabilization, the absolute-vorticity filaments in regions corresponding to the initial 
anticyclones are (i) weaker than the quasi-two-dimensional cyclonic filaments (& - 
O(1)) and (ii) highly twisted in the third dimension. A complete three-dimensional 
study of the effect of rotation on the mixing layer and wake has been performed 
by Yanase et al. (1993), Metais et al. (1992), and Flores (1993) both from a linear- 
stability and a numerical-simulation point of view. In the rotating wake calculation 
of Metais et al. (1992) it was found that the cyclonic side rolled up into stable quasi- 
two-dimensional structures. At the same time, the anticyclonic side gave rise to strong 
three-dimensional longitudinal alternate vortices, analogous to Gortler vortices. The 
calculations presented in $3 of this paper show similar longitudinal stretching of 
anticyclonic vorticity in the homogeneous case. 

Although previous numerical simulations of homogeneous rotating turbulence 
by Bardina, Ferziger & Rogallo (1985), Dang & Roy (1985a,b), Roy (1986) and 
TeissZdre & Dang (1987) did not consider the vorticity asymmetry at R,, - 0(1), they 
have investigated the tendency for their initially isotropic flows to two-dimensionalize. 
These simulations as well as the two-point closure study of Cambon & Jacquin (1989) 
and the wind tunnel experiments of Jacquin et al. (1990), displayed a form of two- 
dimensionalization in that they developed anisotropy in the integral scales measured 
in the directions perpendicular and parallel to 52. However, no significant tendency 
for the velocity vector to align itself perpendicular to 52 was’ noted. Although not 
central to this study, an important focus of this previous work, along with the 
simulations of Mansour, Cambon & Speziale (1991a, 1992), has been the statistics of 
the transfer in the limit & + 0. In all cases the cascade was shown to be reduced 
by the rotation, resulting in decreased energy dissipation. At low &, the timescale 
disparity between slow highly nonlinear two-dimensional modes and quasi-linear 
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inertial waves increases. We can therefore define two distinct timescales : a linear 
timescale, T L  - (252)-', associated with the inertial waves and a nonlinear timescale, 
T N L  - U ' / E ,  associated with the turbulent cascade. Here, U is a characteristic velocity 
scale and we interpret the dissipation rate, E ,  as the turbulent downscale flux of energy 
in the infinite Reynolds number ( K )  limit. As R, --+ 0, the timescale disparity reduces 
the nonlinear coupling between turbulence and waves, yielding T~ -+ 0 and T ~ L  + x. 

As a measure of the influence of rotation on T N L  Mansour et a/. (1991~1, 1992) 
have numerically studied the longitudinal velocity derivative skewness (perpendicular 
to 0) as a function of &. The skewness of a function y is S(y) = ( y 3 ) / ( y 2 ) 3 j '  and 
S(-dul/?xl) is a measure of the strength of vortex tube stretching and therefore of the 
three-dimensional cascade in isotropic turbulence (see e.g. Lesieur 1990). Although 
their definition of the Rossby number was not identical to that used here, Mansour 
et al. (1991~) proposed 

as a reasonable fit to their simulation data, where the asymptotic value 0.49 is 
borrowed from the infinite-Reynolds-number isotropic three-dimensional EDQNM 
calculation of Andre & Lesieur (1977). They observed that at low RJ the cascade is 
inhibited by the inertial waves. In this rkgime it can be shown that at large Reynolds 
number the nonlinearity collapses onto a set of resonantly interacting triads (e.g. 
Holloway 1979). Inertial-wave modes can then be expressed as the product of a 
sinusoidal oscillation (with the linear wave period 271/0(k) - O(51-J) and a slowly- 
varying amplitude whose time variability scales like T A I L  - R(;'. As & decreases, 
the nonlinear term becomes weak relative to the Coriolis term and the inertial- 
wave amplitudes vary increasingly slowly. However, with the appropriate scaling of 
time, the flow evolves nonlinearly and the resonant interactions are seen to become 
increasingly predominant with respect to off-resonant interactions. Whether resonant 
interactions alone can produce a two-dimensionalization of initially three-dimensional 
turbulence remains to be seen. However, using his 'instability assumption', Waleffe 
(1993) reasoned that resonant interactions of inertial waves systematically act to 
transfer energy towards larger lengthscales in the direction parallel to Q. In the 
low-&, regime, two-dimensionalization, if it occurs at all, does so over a very long 
timescale, i.e. T~~ + co. For decaying turbulence, two-dimensionalization as R, + 0 
may conceivably never be achieved. However, in geophysical turbulence, where 
external forcing maintains statistical stationarity, a slow systematic transfer could 
eventually two-dimensionalize the flow. The simulations of Mansour et a/. (19910, 
1992) also display a significant dependence on the Reynolds number. For this reason, 
their observation of an extreme inhibition of the three-dimensional cascade at low 
R,, was demonstrated to be a consequence of the relatively low R, of their direct 
numerical simulations. To illustrate this, one can introduce a dissipative timescale, 
~ ~ ( 4 )  - [ vk2] - ' ,  where v is the viscosity coefficient. In the low-& limit T N L  + x and. 
if we take the limit R, + 0, there is the possibility that r N L  >> T D  for all k .  In this 
case, numerical simulations show only a decay of the quasi-linear inertial waves due 
to viscosity. 

Reynolds (1989) and Mansour, Shih & Reynolds (1991b) used rapid distortion 
theory (RDT) to show that an initially anisotropic Reynolds tensor can be rapidly 
driven back to isotropy by the rotation. Rather than a Taylor-Proudman two- 
dimensionalization, they showed that the final state depended on the initial anisotropy. 
We emphasize that in these studies the focus was on the linear evolution over the 
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timescale 7 ~ .  In the present study we are concerned with long-lived coherent structures 
in fully nonlinear flows and therefore concentrate on timescales of the order of many 
t N L .  In this respect we contend that two-dimensionalization on the slow timescale 
remains a possibility. 

The purpose of this paper is to investigate the formation and stability of quasi-two- 
dimensional coherent structures, and the possible emergence of vorticity asymmetry, 
as a function of rotation in the homogeneous case. Clearly, the vorticity asymmetry is 
of importance in geophysical flows since the effect may limit the ability of rotation to 
render certain anticyclonic eddies two-dimensional. The centrifugal stability argument 
shows that maximum anticyclonic destabilization occurs when the eddy vorticity is 
of the same order as the planetary rotation, implying an application to mesoscale 
atmospheric vortices with timescales of the order of a day. The numerical results 
from a series of simulations initialized with the fields from a preliminary two- 
dimensional decay simulation are presented in $3. The initial fields characterize 
an advanced state of two-dimensional decay and are dominated by intense isolated 
vortices. After applying both a weak three-dimensional perturbation and solid- 
body rotation, the vortices are then allowed to evolve three-dimensionally. Without 
rotation it is found that both cyclones and anticyclones are unstable with three- 
dimensionalization occurring first in the small scales. Intense longitudinal vortices are 
formed with vorticity perpendicular to the axis of the two-dimensional vortices. When 
rotation is applied there is a preferential destabilization of anticyclones at & - O( 1) 
and two-dimensional stability is observed at very low &. Section 4 presents the results 
of simulations obtained with isotropic three-dimensional initial conditions, resulting 
from a non-rotating decay simulation. When rotation is added at & N O(1) there is 
a preferential organization of two-dimensional cyclonic structures. At lower &, both 
cyclonic and anticyclonic two-dimensional structures are observed. The conclusions 
are discussed in $5, 

2. The numerical strategy 
Triply periodic pseudo-spectral calculations (Orszag 1971) were performed. This 

has become the standard technique in homogeneous turbulence studies and has been 
used by Roy (1986), Mansour et al. (1991a, 1992) and others. We specifically chose 
a modest resolution ( 643), permitting longer integration times, in order to simulate 
two-dimensionalization and vorticity asymmetry on the slow timescale z N L .  The model 
integrated the Navier-Stokes equations in the form 

( a / &  + v k 2  + 2 R x )  k(k, t )  = n(k) [F[F- ' (k (k , t ) )  x F-'(h(k,  t ) ) ] ]  , (2) 

where k is the wavevector, h(k, t )  is the Fourier-space velocity satisfying k . h(k, t )  = 

0, U ( k )  is the projection operator, F represents a discrete Fourier transform and 
h ( k , t )  is the vorticity. The Coriolis term was treated explicitly in the present study 
and implicitly by Mansour et al. ,(1991a, 1992). The disadvantage of the explicit 
formulation is the small timestep required at  low &. Since we are primarily concerned 
with the vorticity asymmetry at & - 0(1), this does not pose too great a problem. 
However, in $4.2 where low-& simulations are discussed, it was necessary to scale the 
timestep with R-' as the Rossby number decreased from unity. 

The treatment of the dissipation term is particularly critical in a study of the dynam- 
ics of quasi-two-dimensional coherent structures, where timescales characteristic of 
formation, evolution and pairings are very much longer than the large-scale turnover 
time, z N L .  In order to simulate such behaviour in direct numerical simulations (DNS), 
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it is necessary that the dissipative timescale, zD(k) not exceed the nonlinear timescale 
over a significant spectral range. In three dimensions this is not possible at any reso- 
lution accessible to current supercomputers. For example, a comparison between the 
direct numerical simulations performed at 643 resolution by Herring & Metais (1989) 
with those at 2403 by Vincent & Meneguzzi (1991) show similar statistical character- 
istics with neither displaying significant scaling ranges. With rotation, Mansour et al. 
(1991a, 1992) detect the dependence on & given in (I) ,  which is necessarily quite low 
for our DNS at 64’. We therefore decided also to consider two sets of simulations 
with less dissipation. Large-eddy simulations (LES), in which the viscous term in (2) 
is replaced by a term based on a spatially and temporally variable turbulent viscosity, 
v , ( x , t )  were also performed. In the homogeneous case CholIet & Lesieur (1981) found 
that v, can be approximated by 

E(kT,t) 
v,(t) = 0.4 . 

Metais & Lesieur (1992) expressed this in physical space by appealing to the second- 
order velocity structure function 

/Iu(x+y’,t)-u(x,t)ll’ d2r‘ 

F?(x ,  r, t) = r r  

Assuming a Kolmogorov spectrum E(k) = C K ~ 2 / 3 k - s / 3 ,  it is possible to express ti, in 
terms of FZ evaluated at the truncation scale, r = A X  = n/kT, 

v ~ ( x , ~ )  = 0.04 A X  [Fz(x ,A~, t )]”’ .  

If the contribution to the structure function from the resolved part of the flow is 
denoted G, then the assumption of a Kolmogorov law for wavenumbers above k l -  
gives 

and finally 
v , ( x ,  t) = 0.06 A X  [G(x, A X ,  t)]”’. 

Although the structure-function model is based on isotropic three-dimensional turbu- 
lence, it has been applied to stratified flow by Mktais & Lesieur (1992) and we apply 
it here to anisotropic rotating flow in the hope that at least the small scales are not 
far from isotropy. For more details regarding the method and a critical assessment of 
its performance as compared with DNS, the reader is referred to Metais & Lesieur 
(1992). Also, a particularly simple confinement of the dissipation to near the trunca- 
tion scale can be effected by replacing the Laplacian operator in the viscous term with 
an iterated Laplacian. The result is usually referred to as hyperviscosity and has often 
been used to study the development of coherent structures in two-dimensional flow 
(e.g. Basdevant & Sadourny 1983). In this study we have employed A x .  Since neither 
subgridscale model accounts directly for the rotation, we compare results using two 
rather different models as a sensitivity check. 

Spherical truncation at wavenumber k r  = 32 was applied to the DNS simulations. 
The LES and hyperviscosity simulations were completely de-aliased by truncation at 
2kT/3 since, in these cases, the small scales were more energetic. The simulations 
were initialized with fields characterizing developed two-dimensional or isotropic 

F ~ ( x ,  AX,  t)  = 2.53 G(x, AX,  t ) ,  
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three-dimensional turbulence. We define t = 0 as the time at which rotation (and the 
third dimension) was added. All simulations were carried out to a dimensional time 
o f t  = 20, which is expressed in terms of the integral-scale turnover times in tables 1 
and 2. Although the time-series figures cover the dimensional time range 0 ,< t ,< 20, 
we often refer in the text to times as non-dimensionalized by the initial integral-scale 
turnover time. 

In our presentation of the results, we have calculated a number of statistics based 
on the velocity field in order to compare this study with previous numerical work 
by Bardina et al. (1985), Dang & Roy (1985a, b), Roy (1986), Teissedre & Dang 
(1987) and Mansour et al. (1991a, 1992). It will be demonstrated that our simulations 
are consistent with their findings. At the same time, it is our opinion that the 
interpretation of the results is significantly improved by considering the absolute- 
vorticity dynamics. For this reason, we also calculate analogous statistical quantities 
based on the vorticity field. In order to facilitate the description of the results, we 
refer to the direction parallel to the rotation vector, i.e. &, as the ‘vertical’. The kinetic 
energy and enstrophy 

1 1  
ET = -~ 2 8rc3 111 u’(v, t)  d’r, Z T  = Sn3 111 w 2 ( v ,  t )  d3r, 

are discussed in terms of two-dimensional and three-dimensional spectral contribu- 
tions, 

ET = E2D + E ~ D ,  ZT = z 2 D  f 230, 

where 

and q ( k )  is the corresponding modal quantity. The first term results from the two- 
dimensional flow, while the second term sums over the vertically varying modes. 

3. Simulations with quasi-two-dimensional initial conditions 
In this section a series of simulations describing the evolution of initially quasi-two- 

dimensional eddies in a rotating three-dimensional framework is described. In the 
case of the DNS and hyperviscosity simulations, these eddies were constructed from 
preliminary integrations of the two-dimensional equations (also with u3 = 0), where we 
recall that two-dimensional dynamics (i.e. d / d x 3  = 0) are independent of the rotation. 
Using the same resolution, Fornberg (1977) demonstrated that the vorticity field in 
decaying two-dimensional turbulence tends to wrap up into intense coherent vortices. 
Roy (1986) also performed three-dimensional simulations of quasi-two-dimensional 
flows, but here we examine closely the vorticity asymmetry at R, - O(1). 

The two-dimensional preliminary hyperviscosity simulation was initialized with 
Fourier-space phases selected randomly between 0 and 271 and energy narrowly 
concentrated around wavenumber 7, i.e. 

E Z D ( k , t  = 0) = 

The growth of vorticity kurtosis was monotonic and by the end of the run several 
intense vortices of each sign were apparent. Since the DNS run used a Laplacian 
dissipation, initial conditions concentrated near k = 7 did not produce large vorticity 
intermittency as the dissipation was of the same order as the nonlinearity at the 
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DNS LES A x  
Energy, ET 2.81 2.81 0.33 

Enstrophy, Z T  9.10 8.85 7.99 
Integral scale, L 1.40 1.41 0.54 , 

Turnover time, T = Lfu,,,,, 0.59 0.59 0.67 

TABLE 1. Initial statistical quantities for simulations from quasi-two-dimensional initial conditions 

Integration time 342 347 305 

energy-containing scale (McWilliams 1984). Here we used instead 

1, i f k G 7 ;  
0, if k > 7. & ~ ( k ,  t = 0) = A 2  

In order to produce coherent structures, integration times had to be rather long 
( t  = 30 x 2 n / [ a ) 2 D ] r m s ,  where o = ~ 2 ~ 2 3  is the vorticity). We adjusted the A,  in 
order to get approximately the same final enstrophies in the fields to be used as 
our three-dimensional initial conditions. These fields display the familiar signature 
of two-dimensional turbulence, i.e. intermittent vorticity fields with intense isolated 
extrema, implying large kurtoses, K ( W 2 D )  = ( c & ) / ( o I & ) ~ .  Since the two-dimensional 
equations are symmetric in vorticity, we also note a negligeable disymmetry between 
cyclonic and anticyclonic structures, or equivalently, a near-zero skewness, s ( 0 2 D ) .  For 
the initial two-dimensional vorticity field we obtained K ( 0 2 D )  = 8 and S(OZD) = -0.1 
for the DNS, and K ( W 2 D )  = 7 and s ( 0 2 D )  = 0.01 using hyperviscosity. Since the 
LES subgridscale model cannot be justifiably applied to long-term two-dimensional 
dynamics, the results of the preliminary two-dimensional DNS experiment were used 
to initialize a short two-dimensional LES run of approximately 5 large-scale turnover 
times in order to let the small scales adjust. 

To the basic two-dimensional flow a three-dimensional perturbation was added. 
Apart from the obvious desirable properties such as: small amplitude, a wide range 
of lengthscales and isotropy, we found that the exact form mattered little. Here, we 
present simulations using random phases and 

E 3 D ( k )  = A3k e-kZ/82, 

with A3 chosen such that the perturbation energy was lo-’ that of the two-dimensional 
flow. Table 1 displays some statistics describing the initial fields. 

3.1. Without rotation 

Since the three-dimensionalization of these structures in the absence of rotation has 
not been studied in the homogeneous case, and in order to have a basis for comparison 
when rotation is added, we begin with the case 52 = 0. Time series of the energy and 
enstrophy are displayed in figure 1. It is clear that the energy has not completely 
three-dimensionalized. There is more energy in two-dimensional modes than in 
the more numerous three-dimensional modes even at the end of the runs, whereas 
the enstrophy is affected by three-dimensional modes earlier. Note also that ZzD 
decreases monotonically as in a two-dimensional decay simulation. The rapid growth 
in enstrophy occurs almost exclusively in o1 and 0 2 ,  in the form of longitudinal 
vortices perpendicular to the initial two-dimensional structures. The tendency to 
isotropize enstrophy before energy suggests that the three-dimensionalization occurs 
first in the small scales. This can be seen in the kinetic energy spectra displayed 
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FIGURE 1. Non-rotating simulations with quasi-two-dimensional initial conditions. ( a )  Time series 
of energy: ET (solid line), E ~ D  (dashed line) and EjD (dotted line), ( b )  as in ( a )  for the enstrophy 
Z T ,  ZZD and Z ~ D .  

in figure 2 where, by the end of the runs, the flow is approximately isotropic in all 
but the first few wavenumbers. Although the wavenumber range is small, the final 
spectrum is visibly less steep at intermediate and large scales than that of the initial 
conditions. 

An examination of the vorticity fields reveals that, by the end of the simulations, 
the most intense initial vortices are still intact, but less-intense vortices have three- 
dimensionalized. However, there is a residual two-dimensional component in that 
intense three-dimensional centres seem to occur in vertical columns identified with 
the original vortices (see for example figure 6a below). This is a manifestation of 
the coexistence of three-dimensional small scales and two-dimensional large scales. 
In conjunction with these remnants of the initial field are several intense horizontal 
structures with vorticity oriented perpendicular to that of the quasi-two-dimensional 
initial flow. These longitudinal hairpin vortices result from straining by the original 
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lo0 

10-4  

7 - HYP 
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10 ~h i \  

10' k 10' I00 k 
10 ' **..: 100 
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FIGURE 2. Non-rotating simulation with quasi-two-dimensional initial conditions. Energy spectra at 
(a )  t = 0, ( h )  t = 20. E T ( k )  (solid line), f(u: + u : ) ( k )  (dotted line) and ; ( u : ) ( k )  (dashed line). 

two-dimensional vortices and have often been observed in three-dimensional studies 
of shear flows (e.g. Comte, Lesieur & Lamballais 1992). 

3.2. With rotation 

Apart from the value of 52, these simulations were performed in a manner identical to 
those described above. We define the Rossby number in terms of the root-mean-square 
vorticity of the initial quasi-two-dimensional field, 

&=-. b 2 D 1  rms 

252 

This definition is perhaps not ideal since stability arguments are more accurately 
applied to vortex-core vorticities. We have adopted it for convenience as our initial 
hyperviscosity field is dominated by several vortices of various intensities. However, it 
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FIGURE 3. As in figure 1 but for the rotating case with & = 1 and 
quasi-two-dimensional initial conditions. 

should be noted that, in the limit of extreme intermittency, the r.m.s. value will differ 
greatly from the extremal values. 

We describe in detail the simulations with & = 1 at t = 0 and will refer to 
other simulations as the need arises. Figure 3 shows the energy and enstrophy 
time-series, where it can be seen that the three-dimensionalization of the large scales, 
as manifested by &, has been inhibited by the rotation, resulting in a reduced 
energy dissipation particularly evident in the LES and hyperviscosity simulations. 
The rapid enstrophy growth, corresponding to longitudinal vortex formation, is also 
less pronounced. However, it occurs earlier at & = 1 than in the non-rotating case. 
The final energy spectra (figure 4) are steeper in the small scales than those obtained 
without rotation (figure 2b). 

The vorticity fields have been visualized by displaying both a positive and a negative 
isosurface of 0 3  along with an isosurface of ( w : + c ~ ; ) ' / ~ .  In all cases an absolute value 
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FIGURE 4. As in figure 2 at t = 20 but for the rotating case with & = 1 and 
quasi-two-dimensional initial conditions. 

of twice the root-mean-square vorticity was employed. The initial and final fields are 
plotted in figure 5, where it can be seen that the original anticyclonic vortices have 
all been disrupted into three-dimensional structures. In the LES and hyperviscosity 
simulations a horizontal stretching of these anticyclonic-vorticity structures was also 
noted. At the same time, the original cyclones show almost no vertical structure. 

Simulations were performed with & = 0.1,0.5,1,2 and 00 using hyperviscosity. The 
stability difference between cyclonic and anticyclonic regions diminishes as the Rossby 
number decreases below unity. In the vorticity fields (figure 6) a quasi-two-dimensional 
anticyclone is visible at I?, = 0.5, although it shows significant vertical structure in 
the form of a helicoidal perturbation. At & = 0.1, both E ~ D  and Z ~ D  decreased 
from their initial values, implying a complete stability of all two-dimensional vortices 
consistent with the Taylor-Proudman theorem and with simulations performed by 
Roy (1986). It was only in the low-& case, where a return to two-dimensionality was 
noted, that Roy (1986) examined the vorticity asymmetry. Since the two-dimensional 
limit is sign-symmetric, he (as we) naturally found no statistical difference between 
cyclones and anticyclones. The asymmetry can only be noted when I?, is sufficiently 
large to produce a growing initial three-dimensional perturbation. 

4. Simulations with is0 tropic three-dimensional initial conditions 
Calculations were made for decaying homogeneous three-dimensional turbulence 

submitted to rotation. The isotropic initial fields were generated by non-rotating 

FIGURE 5. The vorticity field for the rotating case with & = 1 and quasi-two-dimensional initial 
conditions: (a) t = 0 DNS, ( b )  t = 20 DNS; (c) t = 0 LES, ( d )  t = 20 LES; (e )  t = 0 with 
hyperviscosity, (f)  t = 20 hyperviscosity. The green surface corresponds to w3 = +wo, light blue to 
w3 = -w, and dark blue to ( w ~  + w?)I / *  = wo, where w, = 2w,,,. 

FIGURE 6. The vorticity field at t = 20 for the rotating case with quasi-two-dimensional initial 
conditions using hyperviscosity at (a) & = 00, (b )  & = 2, (c) & = 0.5 and ( d )  & = 0.1 (see also 
figure 5f for & = 1). 
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FIGURE 5. For caption see facing page. 
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FIGURE 6. For caption see facing page. 
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DNS LES A 8  

Energy, ET 0.33 0.63 1.35 
Enstrophy, Z T  13.4 84.4 137.3 

Turnover time, t = L/u ,  ,,,, 0.25 0.16 0.12 
Integration time 807 130t 1707 

TABLE 2. Initial statistical quantities for simulations from three-dimensional initial conditions 

Integral scale, L 0.20 0.18 0.20 

decay simulations initialized by 

k ,  if k < 3 ;  
0, if k > 3, E ( k ,  t = 0 )  = Aq 

with random phases and carried out to near the time of maximum energy dissipation. 
At this time a short Kolmogorov spectral range was observed in the LES and 
hyperviscosity simulations. After this, the simulations were continued at various 
R, using otherwise identical parameters with the exception of the DNS viscosity 
coefficient. In the case of the DNS, the initial spin-up resulted in a significant kinetic 
energy loss, and a consequent increase in the Kolmogorov scale. For this reason, the 
viscosity coefficient was reduced from 0.01 to 0.002 at the time rotation was added, 
yielding a Reynolds number of 81 based on the integral scale and 63 based on the 
Taylor microscale. Table 2 displays some data characterizing our initial fields. 

4.1. Simulations with R,, = 1 
We begin with the simulations with 

Examination of the time series of the kinetic energy and its two-dimensional and three- 
dimensional contributions (figure 7) reveals that for all types of simulations, the two- 
dimensional energy, E?D decayed significantly less rapidly than the three-dimensional 
energy, E3D.  In fact, EZD increases with time during most of the hyperviscosity 
simulation, implying a direct transfer from the three-dimensional modes. By the end 
of all of the runs, the two-dimensional modes account for approximately twice as 
much energy as the three-dimensional modes. The three-dimensional energy roughly 
follows a power law, i.e. EjD cc t-", where cc = 1.6 for the DNS and about 1.0 for the 
LES and hyperviscosity simulations, in reasonable agreement with high-Reynolds- 
number isotropic turbulence (see Lesieur 1990 for a discussion). The enstrophy 
displays a similar behaviour, although the relative weights of two-dimensional to 
three-dimensional parts of the field are different, owing to the fact that enstrophy 
weights more heavily the smaller scales and the density of two-dimensional modes 
increases like NzD - 2nk, whereas N3D - 4nk2. Still, the decay rate of the two- 
dimensional enstrophy is weaker than that of its three-dimensional counterpart, 
implying a monotonic two-dimensionalization of the small scales. 

The energy spectra (figure 8) display a progressive steepening throughout the 
simulations and a developing anisotropy between u1.2 and u3 variance spectra. This 
first occurs, somewhat surprisingly, in the small scales where the u3 spectrum exceeds 
that of the horizontal flow. This anisotropy was noted in the EDQNM study of 
Cambon & Jacquin (1989) as well as the direct simulations of TeissZdre & Dang 
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(1987). At the large scales the u3 variance is in the range of 4 to 7 times weaker than 
that due to the average horizontal component. 

As a measure of component anisotropy, we follow Reynolds (1989) and Mansour 
et al. (1991b) and adopt 

where vector a represents velocity or vorticity and denotes a spatial average. 
Time series of the diagonal elements of b$ and b; are shown in figure 9, where it can 
be seen that the u3 variance is decreasing near the end of the simulations and that 
the vorticity is monotonically evolving to a state dominated by 03. The results are 
consistent with a tendency towards a two-component two-dimensional flow using the 
terminology of Reynolds (1991). Note also that for approximately the first quarter of 
the runs the velocity-component anisotropy is weak (especially for DNS). It develops 
only after approximately 20 initial large-scale turnover times. This is consistent with 
the rapid distortion theory results of Reynolds (1989) and Mansour et al. (1991b) 
who noted no systematic trend to Reynolds-stress anisotropy over the fast timescale, 
z L  in the low R,, limit. As pointed out by a reviewer, rapid oscillations in the Reynolds 
stresses at frequency 4!2 were predicted by Mansour et al. (1991b). These can perhaps 
be seen in the time series of b; (see also Lesieur et al. 1991), although we have made 
no attempt to sample often enough to measure their frequencies. 

Previous researchers have considered the integral scales as a measure of two- 
dimensionalization in initially-isotropic flows involving rotation (Bardina et al. 1985; 
Dang & Roy 1985a,b; Roy 1986; Teissedre & Dang 1987 in simulations, Jacquin 
et al. 1990 in the laboratory). We generalize the concept slightly by introducing a 
vorticity analogue, i.e. 

where a represents velocity or vorticity. In practice a discretized version is required. 
We calculated covariances at intervals of one grid length and employed Simpson’s 
rule to perform the integral. It should be kept in mind that the discrete scale L;,k 
is numerically bounded by our periodic domain length such that L < 71/3 for a 
three-dimensional isotropic vector. Figure 10 displays L;,l and L;,3. The results are 
consistent with the above-mentioned studies, although the present simulations are 
much longer. LY,,, is seen to grow steadily and quasi-linearly as the large scales 
two-dimensionalize and the spectrum steepens. More striking however, is the large 
growth in L7,,3 which attains values between 5 and 10 times greater than L!3,3 by 
the end of the runs. It must be kept in mind that previous simulations were not 
integrated significantly longer than the time at which LY,,, = This is perhaps the 
most natural way of comparing the length of rotating simulations. Here, LYI.3 = Ly3,, 
occurred in the first quarter of the runs. Up  until this time the velocity component 
anisotropy did not show a clear trend (figure 9). It would appear that the integral- 
scale anisotropy growth occurs almost immediately upon application of the rotation, 
whereas the Reynolds stresses show a trend to anisotropy only after tens of turnover 
times. In short, Bardina et al. (1985), Dang & Roy (1985a,b), Roy (1986) and 
Teissedre & Dang (1987) were able to observe anisotropic L;& in their simulations, 
but they did not integrate long enough to observe anisotropic Reynolds stresses. 

The vorticity-based lengthscales, L:, and Lc3 are displayed in figure 11. Here 
we note the important growth in o3 lengthscales in the directions both parallel and 
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FIGURE 7. As in figure 1 but for the rotating case with &, = 1 and 
three-dimensional initial conditions. 

perpendicular to the axis of rotation. Once again, this is consistent with a two- 
dimensionalization of the small scales and a consequent steepening of the enstrophy 
spectrum associated with the formation of two-dimensional coherent structures, larger 
in horizontal scale than the tube-like high-vorticity regions noted in three dimensions 
by Siggia (1981) and Vincent & Meneguzzi (1991). In order to distinguish between 
cyclonic and anticyclonic regions, we have performed the I,?!,! sum obtained from 
discretizing (4) separately according to whether 0 3 ( r )  is positive or negative. The 
resulting curves (figure 1 lc) show correlations over significantly larger vertical scales 
for cyclonic regions than for anticyclonic regions. Stated simply, cyclonic regions are 
more two-dimensional. 

Both the initial and final vorticity fields are shown in figure 12. Although the 
results are not convincing for the DNS, the LES and hyperviscosity simulations both 
display two-dimensional coherent cyclones and little or no two-dimensionalization of 
the anticyclonic regions. If we reduce the Rossby number from unity to 0.1, the field 
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FIGURE 8. As in figure 2 but for the rotating case with & = 1 and 
three-dimensional initial conditions. 

shown in figure 13 is the result using hyperviscosity. Here it is noted that, at lower 
&, both two-dimensional cyclones and two-dimensional anticyclones emerge from. 
the isotropic initial conditions. 

It is well known, as already recalled, that non-rotating isotropic turbulence contains 
coherent structures in the form of intense vortex tubes, corresponding to low-pressure 
regions (see also Mitais & Lesieur 1992). Consider the initial isotropic flow to which 
rotation will be applied. Very naively, we can approximate it by a distribution of 
vortices, each one in the Rossby-number range of maximum anticyclonic instability, 
which are aligned either parallel or perpendicular to the rotation axis, C3. Now 
we apply the Rayleigh argument to the parallel vortices, yielding a stabilization of 
the cyclones and a destabilization of the anticyclones. If we use the quasi-two- 
dimensional initial-condition results of $3 as a guide, the anticyclonic vorticity is 
stretched longitudinally by the cyclones, which gradually dominate the field. As for 
the original longitudinal vortices (with o I &), they are also stretched in the shear 
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line), component parallel to the rotation axis (dashed line). The dotted lines give values for 
two-dimensional two-component flow. 

induced by the cyclonic vortices. As in the quasi-two-dimensional case, rotation is 
responsible for a breaking of symmetry in the form of the emergence of cyclonic 
vortices from the randomly oriented initial vortex distribution. I n  the subsequent 
evolution the stretched longitudinal vortices participate in the three-dimensional 
cascade to the dissipation, whereas the remaining quasi-two-dimensional cyclones 
evolve in a manner consistent with two-dimensional turbulence studies. Since all 
intense coherent structures are of the same sign, pairing events are not uncommon, 
producing an intense inverse energy cascade and eventually an intermittent vorticity 
field dominated by a few strong vortices. 

The instantaneous histogram of grid-point values is often considered as  an estimate 
of the probability density function (p.d.f.), without the required ensemble average. 
The histograms of 03 for the simulations with &, = 1 for the initial and final fields 
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are shown in figure 14. The initial p.d.f.’s characterize non-rotating three-dimensional 
turbulence and resemble those obtained from du,/dx,  ( i  # j )  both in experiments 
on grid turbulence and in numerical simulations. We recall that this quantity is not 
skewed in homogeneous isotropic three-dimensional turbulence. The exponential form 
noted in simulations by Herring & Metais (1989) and Vincent & Meneguzzi (1991) 
and in the laboratory by Van Atta & Park (1972) and Anselmet et nl. (1984) is present. 
It was proposed by Mktais & Lesieur (1992) that this could be the signature of the 
coherent vortices of isotropic turbulence. The various treatments of the dissipation 
also give rise to differences in the p.d.f.’s. The fact that the LES p.d.f. shows 
slightly less intermittency than that of the DNS was noted and discussed in Metais 
& Lesieur ( 1992). In comparison, the hyperviscosity simulation shows considerable 
intermittency and the distinctive exponential form noted at higher R, by Vincent & 
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FIGURE 12. The vorticity field for the rotating case with & = 1 and three-dimensional initial 
conditions as in figure 5 :  ( a )  t = 0 DNS, (b)  t = 20 DNS; ( c )  t = 0 LES, ( d )  t = 20 LES; (e) t = 0 
with hyperviscosity, (f) t = 20 hyperviscosity. 

FIGURE 13. The vorticity field at t = 20 for the rotating case with R,, = 0.1 and three-dimensional 
initial conditions using hyperviscosity. 
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FIGURE 14. R, = 1. Grid-point value histograms of w3: (a )  t = 0 DNS, ( b )  t = 20 DNS; ( c )  t = 0 
LES, (d )  t = 20 LES; (e) t = 0 with hyperviscosity and (f)  t = 20 hyperviscosity. The dashed lines 
correspond to comparison Gaussian functions of various widths. The fields have been scaled. by 
their r.m.s. values. 
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Meneguzzi (199 1). These differences underline the importance of comparing results 
using different subgridscale models. 

The p.d.f.’s at the end of the runs differ considerably from their non-rotating 
counterparts at t = 0 for all treatments of the dissipation. The t = 20 o3 histogram 
shows a perceptible asymmetry. The decay on the positive (cyclonic) side is not only 
slower than Gaussian, but also slower than in the non-rotating initial fields, implying 
considerable cyclonic intermittency. We have seen above that this occurs in the form 
of quasi-two-dimensional coherent structures. On the other hand, the negative side 
of the distribution (anticyclonic) displays an almost perfectly Gaussian behaviour. 
Anticyclonic regions therefore show no intermittency. In other words, the anticyclonic 
vortices existing in the initial fields have been destroyed by the rotation, while the 
cyclonic vortices have been reinforced. The Gaussian behaviour also suggests that 
the three-dimensional anticyclonic regions are not participating in the cascade of 
energy to small scales. The p.d.f.’s of the vorticity components perpendicular to the 
rotation axis (not shown) are little affected by the rotation and therefore resemble 
those displayed in figure 14 at t = 0. 

The asymmetry in the 0 3  field can be measured by its skewness. Time series 
of S(oi) are shown in figure 15, where the growth in S(w3) is apparent while 
S(w1,~) oscillate about zero. On the same figure the kurtosis time series are also 
displayed. McWilliams (1984) used this quantity to signal the emergence of two- 
dimensional coherent structures. Although these structures are apparent in the LES 
and hyperviscosity simulations, the low & of the DNS prevents the buildup of 
significant vorticity intermittency. This has long been known for two-dimensional 
flows (McWilliams 1984) and explains the frequent use of hyperviscosity in two- 
dimensional simulations. 

4.2. The dependence on & 
Having described the effect of rotation at & = 1, we now consider other rotation 
rates. For this purpose we have performed 14 simulations of 25 integral-scale turnover 
times duration employing hyperviscosity and starting from the same initial conditions 
as above. The only parameter varied is the rotation rate, which produces almost 
4 orders of magnitude variation in the Rossby number. The normalized energy 
dissipation along with its two-dimensional and three-dimensional contributions can 
be written 

where E, = E T ( t  = 0), A refers to differences over the 257 integration length and z is 
the integral-scale turnover time. They are plotted in figure 16(a). Starting from low 
rotation rates, large &, the curves are somewhat flat as the rotation is too slow to 
affect the flow significantly. Near & = 1 the total dissipation begins to drop off as the 
inertial waves inhibit the cascade (Cambon & Jacquin 1989; Mansour et al. 1991a, 
1992), reaching very low values at the lowest &. Over the range 0.05 < & < 0.7 
the dissipation of the two-dimensional modes changes sign as these modes actually 
gain energy via a transfer from three-dimensional modes. This direct conversion from 
three-dimensional to two-dimensional energy reaches a maximum at & = 0.2. 

The Taylor microscale, A = ( E T / Z T ) 1 / 2  is displayed as a function of the Rossby 
number in figure 16(b). This quantity decreases in decaying three-dimensional tur- 
bulence and increases in decaying two-dimensional turbulence, reflecting the inverse 
energy cascade (see McWilliams 1984 who considered k = A-’). Here we note 
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three-dimensional behaviour at large &, and two-dimensional behaviour at small &,. 
More importantly, a maximum is reached near R, = 0.1 where the inverse cascade is 
strongest. 

The two-dimensionalization of the velocity and vorticity over the time period 
simulated is shown in figure 16c. It is measured by the spectral anisotropy growth, 

E l D ( f  = 25~) /E3 , ( t  = 252)  

E 2 D ( f  = O)/E3D(t = 0)  

Z z ~ ( t  = 25t)/Z3D(t = 252) 

Z Z D ( t  = o)/z3D(t  = 0) 
d t .  = .cez = . (6) ' 

It  can be seen that the two-dimensionalization of the velocity field reaches a maximum 
near that of the three-dimensional-two-dimensional transfer (seen in figure 16a). One 
can observe the same behaviour in the study of Roy (1986) who plotted time series 
of the vertical integral scales LTl,3 and L&3 at various R, in his figure 97. A clear 
maximum LT,, growth at his integral-scale based Rossby number of 0.35 can be 
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seen. The two-dimensionalization, as measured here, then decreases to near unity at 
low &, consistent with Mansour et al. (1991, 1992). The vorticity is seen to two- 
dimensionalize more efficiently at slightly lower & than the velocity and shows some 
degree of persistent two-dimensionalization even at very low &. 

Finally, we display the skewness of the vorticity component parallel to the rotation 
axis, S ( o 3 )  in figure 16(d). A sharp maximum is observed at R, = 0.4. The picture 
that emerges from this set of simulations is that there is a critical Rossby number 
around 0.1 to 0.4 where the three-dimensional modes efficiently transfer energy to 
the two-dimensional modes, resulting in a significant two-dimensionalization of both 
the velocity and vorticity. It is precisely over this range that the asymmetry between 
cyclones and anticyclones is maximum. Clearly the most efficient two-dimensionali- 
zation occurs via the preferential formation of cyclonic coherent vortices. 

We focus on larger Rossby numbers than Mansour et al. (1991a, 1992). However, 
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whereas they note only a weak tendency toward two-dimensionalization at any &, it is 
significantly stronger in our work. The essential differences are the Reynolds number 
and the integration length. We also note considerably more two-dimensionalization 
in LES and hyperviscosity simulations than in the low-& DNS. This dependence 
on & has been studied in detail by Mansour et al. (1991a) and forms the basis 
of equation (1) (taken from their paper). It implies that for fixed &, the cascade 
strength is reduced at lower &. Our simulations show a stronger cascade rate for 
the three-dimensional modes than for the two-dimensional modes. A simulation must 
therefore be able to sustain a significant amount of downscale three-dimensional 
cascade, before the dissipative timescale becomes much shorter than the nonlinear 
timescale, in order to observe two-dimensionalization. 

As the Rossby number is reduced from unity, the vorticity skewness diminishes and 
anticyclonic coherent structures begin to emerge provided that the Reynolds number 
is high enough. At extremely low &, the nonlinearity is greatly reduced by the 
inertial waves. In this rCgime the DNS simulations of Mansour et al. (1991~1, 1992) 
are dominated by viscous dissipation. However, the present study suggests that at 
much higher &, such that the flow is not significantly dissipated over the nonlinear 
transfer timescale, a slow two-dimensionalization will occur. 

5. Conclusions and discussion 
These simulations have illustrated both the three-dimensionalization of initially 

quasi-two-dimensional flow and the two-dimensionalization of isotropic three- 
dimensional flow. We have observed that coherent two-dimensional eddies three- 
dimensionalize without rotation through the stretching of vorticity in the stagnation 
regions, resulting in the formation of longitudinal hairpin vortices as observed in 
shear flows. Their intensities eventually rival those of the initial vortices, leading to 
interaction and a generalized three-dimensionalization of the flow. When rotation is 
added, the centrifugal instability arguments predict well the three-dimensionalization 
of anticyclonic vortices. The subsequent evolution is best considered using the uhsofute 
vorticity. At maximum anticyclonic instability the Rossby number is of order one, 
implying that anticyclonic relative-vorticity centres have weak absolute vorticity. In 
$3 this weak anticyclonic vorticity was observed to be rapidly stretched out into longi- 
tudinal vortices between the stable quasi-two-dimensional cyclonic vortices. The latter 
were observed to persist over several tens of large-scale turnover times. For R, = 0.1, 
on the contrary, the quasi-two-dimensional flow returned to two-dimensionality. 

When simulations were started from isotropic three-dimensional initial conditions, 
we observed some tendency for the energy-containing scales to two-dimensionalize 
for 4, 5 1. At & - O(1) this occurred via the formation of coherent quasi- 
two-dimensional cyclonic vorticity structures typical of two-dimensional turbulence 
simulations. The vorticity was highly skewed with little or no intermittency in 
the highly three-dimensional anticyclonic regions. At &, = 0.1, a few quasi-two- 
dimensional anticyclonic vortices were also observed to persist. 

We reiterate that this study is completely consistent with previous simulations of 
rotating turbulence by Bardina et al. (1985), Dang & Roy (1985a,b), Roy (1986), 
Teissedre & Dang (1987) and Mansour et al. (1991a, 1992). Whereas none of these 
studies noted a tendency towards anisotropy of the Reynolds tensor, most observed 
the anisotropy in the integral scales. The present simulations make it clear that 
the former occurs well after the time at which Ly,,, = Lt;,,,, implying that previous 
simulations were not of sufficient duration to observe b: significantly different from 



Coherent structures in rotating three-dimensional turbulence 27 

zero. It is perhaps not surprising that the tendency to larger vertical scales occurs 
before the component anisotropy. In the limit B/dx3 -+ 0, (2) reduces to the equations 
for two-dimensional turbulence in the plane perpendicular to the rotation axis. In 
addition, the velocity component parallel to f2 is advected passively. Two-dimensional 
cascade phenomenologies show that, unlike the variance of the velocity perpendicular 
to 0, u3 (passive-scalar) variance cascades downscale to the dissipation (e.g. Lesieur 
1990). This occurs on the slow timescale, z N L .  

It is through our use of large-eddy simulations with two subgridscale models that 
we have been able to integrate longer, without the excessive viscous damping that 
would be present with DNS on a 643 grid. It is also clear from previous work 
that long DNS integrations at low & display considerably less two-dimensionali- 
zation and less vorticity coherence than our LES and hyperviscosity results. The 
quasi-two-dimensional coherent structures observed in simulations from isotropic 
three-dimensional initial conditions form and evolve nonlinearly over tens of large- 
scale turnover times. Whereas rapid distortion theory studies have been able to predict 
DNS results concerning the lack of Reynolds-stress anisotropy over short timescales, 
ZL, it is hardly surprising that RDT is unable to reproduce the highly nonlinear 
two-dimensionalization on the slow timescale (- tens of z N L )  observed here. The 
vorticity asymmetry has not been extensively studied in previous work. Only Roy 
( 1986) measured it for a low-Rossby-number simulation from quasi-two-dimensional 
initial conditions. In this case he observed stability of two-dimensional flow and 
therefore a lack of vorticity skewness. Our simulations confirm this behaviour as it is 
only via a three-dimensionalization that the vorticity asymmetry is manifested. 

The present study might explain the rotating tank experiments of Hopfinger, 
Browand & Gagne (1982). Turbulence was produced by an oscillating grid oriented 
perpendicular to the rotation axis and located at the bottom of the tank. Whereas 
intense cyclonic vortices were obtained, anticyclones were found to be much weaker. 
In this experiment the Rossby number decreased with distance from the grid due 
to a simultaneous decay of turbulent kinetic energy and a growth of the integral 
scale. Thus, it is possible that at a distance from the grid where the local Rossby 
number corresponded to maximum asymmetry, cyclonic vortices were formed, as in 
our computations. Above, where the Rossby number was small, the flow became 
two-dimensional following the lower cyclonic vortices. Our explanation is proposed 
as an alternative to that of Mory & Caperan (1987), who drew the analogy between 
this experiment and thermal convection. Their study relied on the problem’s inho- 
mogeneity, with the gradient of the turbulent kinetic energy along the rotation axis 
playing the role of the mean temperature profile in the convection problem. This 
approach did not predict the observed preponderance of cyclones over anticyclones. 

Our findings may also be applied to the development of intense cyclonic pertur- 
bations in the atmosphere resulting from baroclinic instability. The Rossby numbers 
characterizing growing perturbations may be in the range where cyclonic vorticity is 
favoured, although clearly the influence of density stratification must be considered. 
Note that Jupiter’s great red spot, which is anticyclonic, has a local Rossby number 
much less than one, implying that rotation is two-dimensionally stabilizing. This 
could be a factor for the persistence of this vortex, even in a non-shallow layer. 

The authors benefitted considerably from numerous informal discussions with J. J. 
Riley, D. J. Tritton, S. Yanase, C. Flores, B. Legras, N. N. Mansour, Y. Gagne, 
P. Comte, T. Warn and from the referees comments. We are also indebted to Y. 
Fouillet for developing the visualization software (FLOSIAN). P. B. would like to 
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